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Abstract

A nuasiUncar theory is formulated which includes the microscopic (luctuntion
fields as well its the coherent waves. The study emphasizes those cases in which
the propagating mode of the fluctuation field gives rise to a dominant contribu-
tion to the particle correlation. In other words, in these cases the spontaneous
Cerenkov emission of plasmons can play a more important role than the two-
particle collision process. The instability which is responsible for the turbulence
call be of either electrostatic or electromagnetic, or of mixed nature. The effect
of an external magnetic field is also considered in the present theory. The final
,-esult is valid for all arbitrary ratio of the energy density of the coherent wave
to that of the fluctuation field, although the condition of weak turbulence is
imposed throughout the analysis.
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A Unified Quasilinear Theory of Weakly Turbulent Plasmas

I. Introduction
The existing theories concerning weakly turbulent

plasmas may be grouped into two categories; in one,
the interaction between the coherent wave and the reso-
nantparticles is emphasized, and the other is concerned
with the effect of correlation. In the former, which is
called the quasilinear theory in the literature (Refs. 1-7),r
correlation is completely neglected, and in the latter
(Refs. 9-16), the macroscopic waves are totally ignored
under the assumption of homogeneous plasma. Evidently
the two theories are concerned with two extreme situa-
tions, For instance, if we define a ratio r such that

r—

/ energy associated with microscopic fluctuation field
energy associated with coherent oscillation f„,,,,,e

mutlu

(1)

'For other publications concerning the applications of the quasi-
linear theory to specific problems, see Ref. 8.
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the quasilinear theory deals with the case r3 0 and, on
the other hand, the theory emphasizing correlation is
concerned with the limit r-a oo.

Intuitively one may think that the condition r «1
deseribcs a more realistic plasma, and thus the quasilinear
theory seems to be more interesting, however, we want
to point out that the two theories are complementary.
For example, in the quasilinear theory, we assume
implicitly that the quasilinear stabilization process is
characterized by a time scale much shorter than the
characteristic time for the establishment of particle cor-
relation. This implies that the validity of the quasilinear
theory cannot be fully appreciated unless we can first
understand how the plasma turbulence affects the particle
correlation. In general, three fundamental processes
determine the particle correlation; their relation may be
expressed as follows:

by virtue of collective processes 	 (A)
Correlation	 (collective interaction) 	 (B)
of particles

by collisions	 (C)-

1

i



J

where

(A) = propagating mode of the microscopic fiuclua-
tion field originated by both stimulated emission
(or absorption) and spontaneous emission

(B) = nonpropagating (heavily damped) modo of the
fluctuation field, contributing to the dynamic
shielding phenomenon

(C) = direct particle encounters

For turbulent plasmas in many cases, process (A) may
prevail over processes (B) and (C). In this memorandum
we shall pay special attention to these cases, Since the
effective correlation time may be greatly shortened in
these cases (this phenomenon is attributed to the en-
hanced fluctuation of the microscopic density and field
clue to the presence of instability; see Ref. 17 for pub-
lications oil effect of collective processes on various
relaxation times in a stable plasma), it is desirable to
include the contribution from the fluctuation field also.
ciated with the instability.

In the subsequent discussion, we shall restrict our
analysis to the weakly turbulent plasmas, in which both
mode-coupling and particle-trapping processes (Refs. 8
and 18) arc negligible, Moreover, since most instabilities
exist in magnetized plasmas, wo shall include the effect
of an external magnetic field. For the sake of generality,
both electrostatic and electromagnetic modes will be con-
sidered so that the theory is useful for plasmas with an
4.rbitrary value of p (i.e., the ratio of fluid pressure to
magnetic pressure). The present theory is intended to
bridge the usual quasilinenr theory and the kinetic theory
for a homogeneous plasma. Consequently, the result is
valid over the complete range of J'.

From the result of this work, we shall see that the
smallness of the ratio defined in Eq, (1) alone is not
sufficient to justify the neglect of correlation. An addi-
tional criterion must be considered; that is,

stimulated emission	 /spontaneous emission\
of plasmons with / > > , of plasmons with the

momentum ]c 1	 same momentum

(2)

Evidently, in many cases, this condition is violated at a
later stage of the relaxation process in the usual quasi-
linear theory. For instance, (1) in the one-dimensional
"bump-on-the-tail" problem (Ref. 18), when the plateau
is asymptotically formed and (2) in the case of ion-wave

Instability, when the spontaneous emission cony become
significant shortly niter an Initial stage of evolution be-
cause of the high population of resonant electrons. It is
true that fit first instance the contribution from the
propagating mode of the fluctuation field to the cor-
relation may be expected to be of the same order of
mngnitudc as the collislonal process and, in order to be
consistent, one should also include the latter effect.

To improve the present work and to extend it to strong
turbulence is indeed desirable. Perhaps the methods sug-
gested by Dupree (Ref, 19) and Nishikawa (Ref. 20) can
be unified and generalized.

H. Mathematical Formulation
The Klimontovieh equations (Refs. 21 and 22) of a

multi-species plasma including both electrostatic and
electromagnetic interactions can be expressed as follows;

8N„fl
-hv • 0N fl -I x c XBo "a

	

-I '(13 „' d o X B O) • aNfl" = 0	 (3)

n,

	

C 

DE 
+	 em l d" oN fl (r, v, t) v — V X B", = 0

A

(4)

J. 8a +0 X Em
 — 0	 (5)—

c 8t 

7 -B ," = 0	 (6)

. E,,, = 47r	 e„ f & u-NA (r, v, t)	 (7)
fl

where the subscript s designates the particle species,
Bo denotes a uniform external magnetic field, E' ,' and B",

are the microscopic electromagnetic fields, and N. (r, v, t)
is the random density, which may be defined as

Nfl (r, v, t) _	 8 [r — rflh (t)] 8 [v — vfl ► (t) j	 (8)
N

In expression (8), rfli (t) and vfl ► (t) are the position and
velocity vectors at a time t of the ith particles which
belong to the s-species. The derivation of these equations

2	 JPL TECHNICAL MEMORANDUM 33-397
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may be found fit 	 23. Now wo Introduce the Fourier where the symbol ( ) denotes the ensemble-averaged
spectral resolution of the microscopic quantities value and the relation

IS'If (r. t) 	 E Ek (t) elk • r (9) (NO (V , t)) .: II A l'„ (V, t)	 (19)
k

has been used, In Eq	 F. (10),	 „ is the one-pa• ticlo distrI-
Il"' (r, t) -	

I: B
ill (t) elk'r (10) bution function of the s•species particles, which is indu-

k pendent of spatial coordinates; n A is the average number
density of the same species,

Nx (r y, t) ^: E N, (y, 6) elk , r (I1)

k Equation	 (18),	 hi	 principle,	 represents	 the	 desired

Correspondingly, we obtain kinetic equation, although the right-hand terns are to
bo determined. The correlation functions (L°;; N) and

aN°	 aNcx	 v	 °i	
X 13

( 0
(B',; NN) can be de rived from Eqs. (13) through (17). How-

8t A 	Ill ' 	 av„ over, before going further, some useful definitions and

eA (
,v	 l	 aNk relations should be introduced, First we shall designate

„
k	 k•—

k (N1 (v, t)) =- It, f, (k, V, t)	 (20)

ex v X B aN;
aN; + t Ic • v Nk N Evidently, if 0, (r, v, t) is the distribution function of the
at	 "	 n1 A c	 av s-species, PP. may be expressed as

mx ( 	 c	 ^: >	 av ' 	 In, k, \ k - 1.11 (Na ( r, v, t)) _^„(C,V,t) = 	 — T'x(V,t)-I°^f„(1C,V,t)L'Ik-r

V	 aNk'	
k,

illh e X B 	 •	
av	

= 0 (13)

tlx
k	

(21)

1 aE'A'	 47r
— t ]c X B'^! -I-	 e„	 d° o v NH = 0 (14)

Moreover, we see that
C at	

^

A (Ns (r, v, t) Nr (r, V, t))

I aB”` 
^- ! k X E . — 0,A _

b (15) _ 2 2(NN (v, t) N;,°' -10 (v', t)) exp [I Ic • r d- I (k' — k) • r']
L'	 at k k'

k • B,; = 0 (16)
_ (Na (v, t) N° (v', t))

-h 2 (N„ (v, t) N-1r  (v', t)) exp [t k • (r — r') ]

k • E',' = 47r	 c	 d° Wt) (v,t)I	 A	 A (17)
kxo

k•
\	

1 
	

'	 ']-1-	 N	 v t N't	 exp d k	 r -I- t 1.Ld E (NI.;	 r
A (	 ,	 )	 rI	 (v',	 ))	 1	 [	 •	 (	 —	 ) •

” kxo k'

Here we consider = It n I (v t) F (v' t) + n n G (0 v V' t)A	 r	 x	 ,	 r	 >	 x	 r	 x	 >,	 >

0	 °

+n„S„r(v—v')F,(v , t)
In the following, we shall assume that the last term in
Eq. (13) may he dropped, in other words, we consider
that mode-coupling interaction is negligible. Moreover,
we shall take the ensemble-averaged value of Eq. (12)
and obtain

aF„	 e„ (^	 1 ar„
at In, ( C

1 B° • av

'i- I ( n , Il l. Gxr (k, V, V', t) + It„ 8 (v — V) a,, F, (v, t)

kxo

I n„ tt r fA(k, V, t) fr (-1y v',t)}exp [ik•(r—r')]

,+, (n, II I. 	 (k, k' —k,v,v,t
kxo k'

+ it, 8(v—v') fA (k'—k, v, t)

m n av • (E "% NI) 'i o X (B»-%Nk
n x

k

JPL TECHNICAL MEMORANDUM 33-397

(18)	
+ it, nrto(k,v,t)fr(k'—k, V, t))

X exp [ik • r I i(k'—k)-r'] (22)
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where G,r and g,r represent the Fourier components of
the pair-correlation function P,r (see lief. 24 for deDni-
tion), or wo may `w,,rite

hAr( t' r r' , v) vr, t)'-' G Ger(k, V, V', i) C{k^r
k

i, u' S'(far(k,k'-"k,V,V',t)
kAa k

X exp(IIc - r -f i(kr— k)-r'J	 (23)

From Eq. (22), we obtain by comparison that

(Ni (v, t) Nrk (v', t)) t., 11, nrf# (h, V, t) fr (" ko V , t)

`i- n, llr G,r (k, V, V' , t)

`I 11, S,r S (V `-' V') le, (V, 1)	 (24)

This relation will be useful in discussions presented in
Inter sections.

III, Initial-Value Problem

Now wo intend to solve an initial-value problem ac-
cording to the following equations:

a
0N' I I k - v Nk° +	 v X B,, - INti"8l	 " 

e.
nix C	 4av

I I
lls

(tar + c X Bk l . 
av„ 0
	 (25)

1 aE1;	 Orr	 \	

/

c 71 ) c	 e",I & uvN11(v,t)--tkXBk=0

"	
(20)

1 8Ii1
t 

_ i k X Rk = 0	 (27)
c 8

Two points should be noted: (1) for simplicity, we have
dropped the superscript m In the fields Ell, and B11; and
should keep in mind that these fields are microscopic
ones, and (2) in Eq, (25) we have replaced N O by n, F.
(or, in other, words, neglected SNN ). Such an approxima-
tion does not af fect the first-order theory (in the sense
discussed by Dupree in 11cf. 25) since the error in the
evaluation of the function (E- k NM ) is of second order.

Solving Eq. (25) by characteristic integration along the
pnrticlo orbit, we And a formal solution of N;; that is,

N; (v, t) ;; exp [=f kk • r, (t) I N; (v, (t), 0)

2 
1ili a 	 dr oxp [ i k - r, (r)] ^^h (t ° r)

-1- v"
 

Cr) X Bk (t s r)	
ar" (A ))
	 (28)

where r, (t) and v, (t) satisfy the following equations of
motion;

[Z r, (t)
 

(It	
`p (t)	 (20)

(IV.

(it 
(t) = "A ^Ek. (t) + VA (1) 

X B1, (t) J	 (30)

together with the initial conditions

r, (0) = 0	 (31)
and

v, (0) = v	 (32)

Wo notice that Eqs. (25), (20), and (27) resemble the
linearized Vlasov equations.' This explains why the in-
stability associated with the macroscopic wave may also
happen to the microscopic wave. In the following we
postulate that each Fourier component Ek and Bk may be
described by two distinct time variables, say t and et,

where c is a smnll dimensionless parameter; one describes
the fast oscillations and the other records the slow ampli-
fication. Although the fundamental notion of the multiple
time variables is similar to that of Krylov and Bogoliubov
(Ref. 20), the only purpose of doing this here is to sim-
plify the Laplace transform method to he used later.°

To proceed with this discussion, the shall write

Bk =1 1; (t, ct)	 (33)

Bk = BA. (t, et)	 (34)

'The Initial condition of ilia microscopic density N is not "smooth;'
as wo can see from expression (8), The ensemble-averaged value
of the binary product of these hdtial conditions will contain a "self-
correlation" part, It is this part that eventually gives rise to ti,e now
contribution which tho usual quasilinrir theory does not provide.
'This technique was used in Section 16 of lief. 21. Although the
dISCUSS1011 there is concerned with the stable case, extension to a
weakly unstable plasma can be rondo without difficulty.

4	 JPL TECHNICAL MEMORANDUM 33-397
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Ilence we shall Introduce a Laplace transform with 19
(lr' exp (tor' — or') Kk (r', er')o C. (o)fo

respect to the fast time variable t; i.e.,

Iw
N; (v, w, et) F, Jim	 '	 (It exp (Gat	 at) N; (v, t, et)	 (35)

w
11111G (ai)	 dr' cxp (for' — AT') 

4 1+0	 "

jm
Bk (w, et)	 , 111, ► 	 (It exp (Vit ^ ^ at) Ek (t, et)	 (30)

Owo(

	

o

X j 1:k (r', et) •t• r. ('r' ^- t) . U
k (7-',  et)	 p	

(C 2)
t	 at J

J	
'I

=1"	 1

ac 0Ekat, et)rt) 1 G (e')G (w) Kk (w, et) H {
B4. o,, a t) a-• ]im	 dl exp Old ° 41) Bk (t, ct)	 (37)(

fu4-00

where w is real, From (23) and (35), we obtain —]fill nee"	
w(tr

1ne f Ek 	
Mack o,rt)

C	 at
a

1ae14-,k

w (ir exp [ fwt ° of — fk • re (t)lNe (v, w, ct) =' litn fn

X [exp f Iwr — yrtk • r„(r)
4a0

X	 1• (il- Ye (r)) k — (k - y. Cr)) a\1
\a	 w(	

v'`t)XBk(tca0) 1X{Ne(v.(t),0)"-
it-e' `

l ))^lW, 
(V(7) * U ( e') (40)

' a ayy G(t))1( 	 lilt, i^'e"	 w (It exp [iwr °- AT — I k • re (r)l
f

•rave
(')	 /	 4-10	 A

w
X r dr' cxp (twr' -° or) rL k (r', er') -^ v'Ĝt)

Hereafter we shall n;.glcct the second-order terins.
turning to Eqs. (20) and (27), and making use of ^'qs.

Rc-
(36)

3 "	 L and (40), we find

X (Jrk (r , rr) X k)^ . afave (t;t))	 (33) [w' E11 ( 1c, w) — ex k' S r! -1' cl k 1 k!] 1;j. (h1 , et)

-I- !w 
a (-c' ki k/ — c° k, 81,	

F	
'j

w ejl (k,,aj
ar4 (o, ct)

where we have made use of the relation aw L	 (1)	 J	
at

c	 °	 f
clr erwr ]3k=— 

  
f	 Clr erwr (k X 

Bk) 
.N	 Bk (6 = 0) = H1 j k w) -h K' (1c w)r (,	 i	 , (41)

J	 (30) where

which is obtainable from Eq. (27). H* _ '- lf.T'?'^mrat^ ee f d', u v
JA"o

.

If a denotes it unit polarization vector which is parallel °'
X f
	

clt exp [W -- of — { )c • re (t)] N; (ve (t), 0) (42)
to the field Ek, the last term in Eq. (35) can be written as

[N„ (V, w, et)l l..t Kr = —fo [lc X Bk (t = 0)] -h fw Ek (t = 0)

w

Jim tine '	 (IT exp [fwr — AT — I k - re (r)]
—̂y	 r

— 47r Jim 	 ee Pia o v
e n

a

Xra	 i	 (il'V„(r))IC—(k-Y,())a^
w	

J
/r'

X J w dt exp [Gat— At— Ik-re(t)l
i- a

a a.
V
(y` >t )) f w dr exp (Iwr' — AT) Ek. (_ , 40 X it, , r y. (t) X BI; (t= 0)1 • aFs (V8

t(t)) (43)

JPL TECHNICAL MEMORANDUM 33-397 5



	

o il (k,w)=Sir+ 
47rt	 ila Cr
— lim	 rlaooi
w Q-ra ,^„^ ilEa

a

X
 J0

^dtexp[i^at— At— ik•ra(t)]

k • ya (t) Dips (va (t))	 Vol (t)	 aFa (va (t))l

	

X {^1 — w '	 k •aria, (t) + t., C	 ava co

(44)

In a*lj (k, w), which is the usual dielectric tensor, the sub-
script + indicates that the real frequency w should be
considered as the limit of a complex frequency with a
vanishing positive imaginary part. Let us write

	

Et, (k, w) = Re E„ (k, w) + I Im el f (k, w)	 (45)

Hereafter we shall consider that Ime{ j is of O(a) in the
transparent region. Neglecting the high-order term in
Eq. (41), we find, by collecting the real and imaginary
parts, that

ra i [wa ReE,—c''k3 S +c=kiki]a^E9.=

	

Re ([H+ (k, w) + K+1(k, w)] Ekai}
	

(46)

tar a i 1m qi a 1 El -h w 8a, rat (—ca k S i^ l cy kaki

where Ei? = Ek (w, t) E* (w, t), and Ek denotes the complex
conjugate of Eh. Obviously, from Eq. (46), we obtain the
dispersion equation

	

lib" Reej, (k, w)— c' k2 S i, -ho'k i ki l=0	 (48)

Thus, in the transparent region, Eq. (47) may be re-
written as

aw 
(w" a i Re el a,) 

a lls

	

=-2w ailinel I apE9.+21in[(IT +K+,)a I EAl	 (49)

Equation (49) Is useful in the subsequent discussion.

IV. The Equation of Wave Amplitude
If we consistently keep all the terms in Eq, (49) to the

lowest order in e, then we Treed to invert only the zeroth-
order expression for EA into the right-hand side. Accord-
ing to Eq. (41), we have

EF (w, t) _ [
Ili (k, w) + K1(k, w)l at	 (50)

aµ a,-,, av

where 11- and K- represent the complex conjugate of 11*
and &, respectively. Moreover, for simplicity, we have
defined

\	 aE;	 a;v° w' ep" — es k2 Spv + eq ki t kv	 (51)

	

+wRee]^)rl^^ 
aE	

!	 1

/	 IIence, after taking the ensemble-averaged value, we can
= 21M [ (H} (k, w) I K} (k, w)) a  E* ] 	 (47)	 write Eq. (47) as

a (E (w, et)) —	 (	 ( [H+ -1- K J a i [1-1;, + K;,,l a,,,)

at	 — 2y (Ei (w, et)) + 2Im { (aµ 
a- v av) ^w a{ (c- ki ki 02k2 

S1, f_ w Re i (k, w) I a^^^	 (52)

	

.^	 A

where	 Thus,

_	 w'ai lm gI(k,w)a,
y	 a	 (c' kit kv — c= k2 81,v	 1

w am Q i, `	
w	

+ w RC EJly av

Let us restrict our discussion to the field associated with
the unstable mode. For that case, we may write

Ek (t, at) = Eak (at) exp ( — 'i(pq t).

W	 W
(Ek (w, at)) = lim	 dT exp [i (w — wq) r — AT]	 dr

d-.o I	 o

Xexp[— i (to — wq)r —LET]

X (Eok (a7) Eok (ar ))

= lim^ J dT d7' exp [I (to— wq) (r — T)— A(7 + r')l
-.A 0 0	 o

X ((Eak (at) Eok (at')) + O (a))

rim 	 S (w — wq) (ER (at)) + O (a)
n-.a 0

(53)

(54)

6	 JPL TECHNICAL MEMORANDUM 33-397



When wo substitute expression (54) into Eq. (52), we 	 where
may ignore the first-order terms in (54) since both a (E9.)/at
and 2y (EJ) arc already spontaneously first order in e., _	 nt2A «i	 ,  kl u,,\
Furthermore, we know that when w = wq (k), we may	 Q ,^ — V. a. I ki cos ^] J;, l ^ A `

write	 \	 /

aµ aj,v (k, W (1) (IV — a
awn, 

[al, Re aµv (k, wa) av]

	

_	 i7r8 (w — wr,)

[w ap Re cl+4v av]	 (55)

and

1
0k i —c'= k ail	

l 1wr, 
w„ L ai 

(Oki
	 w	 -I- wr, Re E^,i/ ^t

a	 Ja

_	 1
58

a -[w, a{ Re a+1j (k, w,) a l l	 ( )
aw„

From Eq. (52) and relations (54), (55), and (56), we find,
after integrating over w throughout Eq. (52), that

D (E9 
t 
et)) 

= 2y (k, w0) (E9 (et))

+ lim 2A 
(II, (k, wa) a, II;,, (k, wR) a,,,)	 (57)

e -,o

8 
[w,a^,Ree+v(k,wn)av]I

',

	

ki of	
5fl-F « v, sin' Olo° C 

^A

	
(59)

In Eq. (58) and expression (59), the subscripts z and L
denote the components of vectors parallel and perpen-
dicular to the magnetic field, 0 is the angle between the
vectors ai and ki, a, = eA Bolin, c, and J„ and J;, are the
Bessel function of nth order and its derivative, respec-
tively. The first term on the right-hand side may be con-
ceived to be proportional to the stimulated emission of
plasmons associated with momentum k and the second
term proportional to the spontaneous emission.

In deriving Eq. (58), we have assumed that

	

FA (v) = FA (v;, Ui)	 (80)

The validity of this postulated condition may he
questioned if the unstable mode is propagated in a direr,-
tion neither parallel nor perpendicular to the external
magnetic field Bo. One important point is that if the
plasma is initially cylindrically symmetrical, there should
be no preferred direction of propagation in the plane of
symmetry. This is to say that if the aforementioned un-
stable mode exists, then other modes must exist which
have the same propagation characteristics but are cylin-
drically symmetrical with respect to the magnetic field.
Consequently the symmetry condition is not violated.

Notice that in the source term of Eq. (57) all terms
proportional to K= vanish. The reason A (H+ a, H;„ a,,) sur-
vives is that it contains a part which behaves like A- 1 (see
Appendix A). The final form of Eq. (57) is

Tt (Ek ( et)) = 2y (k, wa) (EK (rt))

+647r' ..wi 	 e„ ^^ dvl v r,^dv,

A )to-W	 J

I

X S 
(w, — na. — k2 v2) I Q 1 o FA (y=, yi)	 (58)

a

a 
[wR aµ Re µv (k, w9) av]

wn,
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Finally, since E,; is the microscopic field, the quantity
(EK") may be expressed as the sum of two parts, i.e.,

(ER) = Er + (SEA)

where Eti is the ensemble-averaged field or the macro-
scopic field and SEk the fluctuation. field. In the usual
quasilinear theory, it is assumed that

Ek» (8Ek)

and, on the other hand, the theory with correlation
considers

7



V. The Kinetic Equation

Formally the kinetic equation may be expressed as

ar, __	 e, a 	 o
at —^ m, n, av -^ 

dw l4fm 
a

k

X la + (v • a) k w (v • k) a^ (EA (w, et) Ne (V, w, et))

(61)

Since F, is considered to be symmetrical in the vl-plane
and (E*,. N;h) _ (EjN;)", we can average the right-hand
term of Eq. (61) over the azimuthal angle and retain only
the real part of it. Thus,

aF __	 e	 o A	 +W a
lim — d¢ dw —

at	 —^ 911, n, 4.,2n' o	 fro	 av
k.

•Re{^a
+ (V•a)k—(v•k)a l(r^ 

(m, Et) Na(v,w,Et))^
fill	 w	

J
J 	 11111

(62)

The evaluation of the right-hand term is shown in Ap-
pendix B. Here we shall simply state the result:

art , —
	

Fe, N
__'N - 

a + nn ' a 
1/at ^ m, Z ( h " ae. vl ael/

k	 n=-w

X 

11 
Q+)1 8 (wq — nfla — k. v.)

X	
47rFa w., yl )

-L (w1 aµ Re e't, (k, wq) ap)
a

(E (et)) ! ar,	 nf2,	 \^l	 63
`	 +
	 BF,

w2 mg	
k 

ay. + v avl J 1(	 ( )

The quantity I Q + 
I 
e is defined by Eq. (59).

Equation (63) is obtained in the quasilinear approxima-
tion in which the resonant diffusion process is considered
to be most important and the nonresonant contribution
and the ordinary collision integral are neglected. The
expression for the nonresonant contribution is somewhat
lengthy and may be found in Appendix B. The term pro-
portional to (Ex) is obtainable from the conventional
quasilinear theory. The extra term, or what we call the
friction term, is attributed to correlation.

VI. Conservation of Energy
It is important to examine the law of conservation of

energy from the equation just derived. However, since
the resonant diffusion process is important only in a
restricted region in the velocity space, it is conceivable
that in the discussion of conservation of energy and
momentum one must consider both resonant and non-
resonant contributions to the kinetic equation.

Let us study the resonant contribution by making use
of Eq. (63). We obtain

av	 _	 a n, ma 
d3cu=r,

Oct )resonant —^ at [ 2 f	 J resonant
a

_	 ^^11 2,r' n, e;	 +°°

—

^Llll

	

iJl	 CI U.
ma	 a 

d
-w

k	 a

+W

X	 V.
,a-w

47rm, F,
— k. v.) a

awq (wn alt R6 
µv 

a,)

rk`	 +
aF, nos aF,l-I

+ 
(E 

wq

j (et))	

av- 	 D.L. aVl JJ
(64)

However, from Eq. (58) and definition (53), we find

awq (wa aµ Re µv (k, wq) av) 
8t F	 9n,

e

X
fo 

dvl t),,	 do.	 I QQ+" rL S (wR — It% — k. v=)
-m

T c-00

LX C

47rm, F, wq	 ( Ora 
+ 

nn, aF,
+ A (et)) k= ay.	 vl avta	

Jas (w, aµ Re t av)

(65)

In Eq. (65), we have made use of expression for

at lme{i (k, wq) of

which is shown in Appendix C.
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Comparing Eqs, (64) and (65), we find

_L
at roe ,inant	 —^ (Jq awq (

mQ aµ RC E t̂v (k, ofq) av] at 8n)
k

(66)

To calculate the nonresonant contribution, we shall
employ the result given by Eq. (B-19) in Appendix B.
We see that

aU	 _	 nB mB

F) 	 —E 2 f [La ll v2 (R,) nonrceonant
nonroeonant

e

—^^ dvl vl
4mBw7 3 o^	 ^m^

do;

k	 B	 tia-op

Xv,l;t(v,)aUB+alcos2 ^(ki°)ZJ;t lava

From (67) and (68), we obtain

(au \	 _ —E f (a, Re y (k, wa) av] a (Eg)
at nonrosonnot	 at 81r

k

+ I atoq 
(toq aN. Re Eµv av)

a (El 	 a A)1

	

X at 87r — at $r. J	 (6s)

However, we know that

tu2, aµ Re µ v (k, mg) = e k= — o2 alt kit kv av

Thus,

av

at nanroeanr

r

ant

— —	 [ 

ca k2 — o= ait kit kv av	 1 a (k)1	 (70)
^n	 + 1 at 8rr f	

70

k

However, it is easy to verify that

c= k2 — c= kit kv av

	

2	
(El
	 c' (k X a)2 (Lk) _ (Bk)

	

2	 -f K) = 2

	

mq	 ^q

(71)

+ L

r	 a 
P	

1	 1	 1
—mg amg wq — nas'— v; k. ' P wq — k,vz — no,

(67)	 \ at /total + at E (S,r) + (sir)) — 0	 (72)
\

k

This proves that the sum of the particle energy and
energy associated with the wave fields is constant in time.

OF,
+al vi sin' No vlavl

From Eqs. (66), (69), and (70), we conclude that

X I4 ,,.I 2  Ck- 
aFB + nf2 B aFB )I

- av;	 vl aUl

However, from Appendix C, we know that

aµ Re µv (k, toq) av

=1+2r,	
wR

Clvl vj. Jdo;

B	 J

VII. Stationary Solution
In this section, we shall discuss the form of the time-

independent solution of F B . From the amplitude equation,
Eq. (59), we find that

+DO	

//
QX ^fP	 ^ I'	 r kaFB + +^nB aFB \	 f^dvlvl dv 	 S(t)^q—nftB—k,v:)IQiI2

1 q — nizB — k: v ` av„	 V1. avl)	 Jo	 w

n=-m

1 aFB 	 X { 4rr k- 2F8+ 
nftB 

"a 1(Ek) + mB (167r2 ml)B	 a1n2 ^g 
cost ^1	 `	 /J+ a v. J; 

aF
av- + k 01,2,v

a. avl	
av-	 vl avl

1 aF B 	 a	 (73)+ alvlsin2 ^In2 vl TV— 	awq (wR aµ Re e,+,, av]	
73
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However, from the kinetic equation we also conclude
that any moment 'T., i.e., 	 .

W
27r	 do,, o, fdo. (% (o:, ol) F. (v:, vi)

q

must be independent of time. Thus,

f

w	 +w

dof e;, 	 do;	 S (w^ — ttif!„ — k v:) I Q + 1'
n	 -w

ail?	 1,.n, all)	 aF,	 nn, aF,
X 	 -I- vi 

8^l> 4,r 1 k` au. * vl aul) (EK)

F, (e., t.D

	

- 0	 74I m, (16a' w) 
a	 ( )

(0),2  ai, Re 51,, a,.)
awq

We now define

b^ = f, ( ex)	 and	 b; = f_ ( oi)	 (78)

Since a is independent of v„, o, and n, the only choice of
f, and f; is

f, = —2o,A,	 (70)

f_ = —A,	 (80)

where A, is it constant. Thus, from Eq. (76), we find the
condition

2wq aA, = I
	

(81)

From Eqs. (78), (79), and (80) we can easily show that

	

F, = g, (v,) 92 (vi) = 13, exp [ —A, (v + u-)]	 (82)

In Eq. (82), Ii, is a normalization coefficient. Since we
require

From Eqs. (73)'and (74), we see that because <p is arbi-	 pW	 +W
trary, it must be true that	 27r J dol vl f % tiv. P, (v,, v) = 1	 (83)

we find that	 J

ul an t > (L>)	 8	 /J	 (84
7r

+ 47rm, w 1' fl (t)-, Vi)	 = 0	 (75)

aaq 
(w, aµ

and A. may be identified with the thermal energy, such
that

X

Leh us assume that F. (v vi) = g, (v.) g2 (vi). Hence,

([k: gi g= + 2n% g, g,] a -f- 91 92) h,v,+na_w, = 0

Therefore, Eq. (82) shown that the time-independent
solution of T, is the Maxwellian distribution. When this
state is reached, we see that, from Eq. (77)y

_ 	 47TXT

or	
(Er) — (SEA)	 1 

a	
(85)

((0„ all Re a+ ,, a,,)
)q ^amq

rk-LL+ 2nn, J
	

« _ —1	 (76)	 for the mode with wave vector k and frequency wq. How-lL	 ^o^^,+„o:=w,	
ever, since in this case —wq (k) is also a root of the disper-

where	
sion equation, the total value of (SEK) should be

87rXT wg

(Ek)	
1	

a	
(SEx)e = a
	

(86)

2	 (&)2,ap Re eµ,, av)	 (77)	 (w;, a,,, Re eµ„ a,.)
47r 971, 6) 2 awq	 awq
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Equation (86) represents the energy spectrum of the fluc-
tuation field. When there is no external field and BE is
longitudinal, (86) reduces to

(8E9) t ti 47rxT
	

(87)

which is well known,

VIII. Special Cases
In this section, we shall consider a number of special

cases for which the equations yield simpler forms, Dis-
cussion of these cases may facilitate the future applica-
tions of the theory,

A. Electrostatic Instabilities Without an External
Magnetic Field

The quasilinear equations for this case reduce to the
following form:

DF8 ^ ae ^ \k• a \
at —	 in k'-'	 av J

4nFB (v)	 (Ek)	 aFB lX S(wlc•v)r 
a	 + mB (k' av>J^LLacs (Re e+ (k, ,,)J)	 ))

(88)

	

a (Z x) _	 wd 
in.

of — 2y (EF) i 8n2^
k2

fl

then it is found that the form of Eqs, (88) and (89), reduces
to that obtained previously by I•Iarris,' who formulated
the problem from a quantum mechanical approach, and
other authors (Refs. 12 and 13). However, two points
should be noted. First, in our theory the field E A is the
total wave field (macroscopic field plus fluctuation field).
In other words, we have

N
(EK) ° Ek -I- (SEX")

where Eh. is the usual macroscopic field, If the plasma
satisfies the conditions

E2 » (SEf)	 (94)

and

I2 > >	
ar
 47r in, F. (y)	 (95)

then Eqs, (88) and (89) reduce to the conventional quasi-
linear equations. From this point of view, we can also see
that condition (94) alone is not sufficient to validate the
usual quasilinear equations. Condition (95)j indicates that
when (k becomes very small—for instance,
when the "plateau" is asymptotically formed in the one-
dimensional "bump-on-the-tail" problem (Refs. 1 and 2),
the efficiency of stimulated emission of plasmons becomes
very low, and the spontaneous emission may become
significant.

X f cl'v 
S (wa — k - v) F, (v)	 (89)

Iam (Re & (k,
a	

w^)

where

Re e* (k, wa) = 1 +	 k"", P 
J 

dB v (lc aB ) (w — ]c • v)
B	

\

(90)

y= a	
1:k ds vS(w — k • v)(k• 'F8)

awe 
(Re e+ (k, wv)) B

(91)

If we consider electron oscillations and approximate

aw 
(Re & (k, wR)) =

n	 q
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Second, in deriving the equations, we have assumed
that the unstable mode has a frequency w, (k). In some
cases, when FB is symmetrical in velocity space, —w,(k)
can also be a root of the dispersion equation. Then, if we
define each propagating mode as consisting of both plus
and minus frequencies, the friction term in Eq. (88) and
the source term in Eq. (89) should be modified by a factor
of 2 and the energy density is defined as twice the pres-
ent value,

Finally, it is important to note that in the study of a
turbulent plasma in which ion-wave instability is playing
a major role, the spontaneous emission can be more sig-
nificant than that in the case of a growing Langmuir
wave, since the phase velocity of the ion wave is low com-
pared with the electron thermal velocity,

'Notice that the contribution from the nonresonant particles van-

ishes automatically since it is proportional to B (E' )/et.

11

(92)

i

I

i
j,



B. Electrostatic Instabilities With an External
Magnetic Field

The unified quasilinear equations in this case may be
obtained by setting ^ = 0 (longitudinal waves):

ar„ _	 +°°	 Ore,	 a	 ll.f1„ a

k na_a	

lX 

1
S (wq — nf1„ — k: v.)1;t 

C
k A 

11 /

circularly polarized, we may consider it as the superposi-
tion of two linearly polarized modes with a phase differ-
ence of a/2. This can be readily studied, and the result is
given as follows:

art „	 4re„ a 	 n„ a
at	 nl„	 av;	 v1 aUj

k

X 

I 
s ( w4 — (=_u„) — ky v_) U,

r

	

x	
47rF„ (v., VI)	 „	 nS1„ ar„\ 1	 X	 27rF„ (v., yi)

[a0 [Re e+(k, w4)^ 	
m„
(Lk) Ck. 

ar
a y.	 v1 ao1J^}	

[aa	
,,(wn alt Re Ep as,)

4 4

(Rx) r k arA 
-4- 

n A ar„ \	 (99)
a (a f) =

	

	 R” -I- 167r„	
mk at„ 

^ l v1	 (IV. 
+^o	 2w m„ `	 av:	 v1 av1

2
J J

	

Y ( R)	
^ —J 

% cau
4

	

+w	 at _ 2y (RR) -I- 4rr^' wq	 w„ in„ f

	

X	

caul vl f dv.

S (w4 — tbfl„ — k: U;) ]i, F, (y.r Ui)	 e	
u	 J co

	

n a_w	
aa4 

(Re E+ pc, w4)l	

(97)	
x s (wn — (F sz„) — k:v_) 

a	
ul F. (v., v^)

awl 
(02 al, Re 6+11,,(k., w4) av) .

where the growth rate is
(100)

	

to
.
;
.

J 	

1 .L 	
x	

where

	

y = 2zr	 k-	 du u J du

	

+w	 y =	 ^02 y dv.L vy -̂
+m

 A, s [ Wrl — (±^„) — k: U:].
1	 k1 v1	 o	 w

8 ( w4 — nf2„ — k. v;) Jn
JJJJ

.xA3Mt^
Sig
	

N

r„ ^^ arA\

\\ k^ 

a

. ao. ± v aV1 J

	

X (k.	 +; 	 71[2 'A aol) a	 (98)	 x vl a	 (101)
[Re E+ (k , w4))	 8w4 (a)4 alt Re EJ41, at.)

4

	We can see easily that when (w4/k.) < v,, thermal	 It is understood that, in the expression
velocity of the s-species particles, the friction term in

	

Eq. (96) and the source term in Eq, (97) can be very 	 a
important. Yet, these terms are not included in the usualaw4 (wv aµ Re c,+,,, tit.)
quasilinear theory,

we should set a; = k.L = 0. Furthermore, the proper sign
C. Cyclotron or Alfven Waves in a Magnetized Plasma

	

	 to be chosen depends upon whether the wave is right- or
left-circularly polarized, It is useful to remember t liat ft„

	In this case, a. = k1 = 0 and ^ =7r/2. Thus, we find	 is negative for the electrons and positive for the ions.

	

that Q; I' = 0 if n ±1, and Q* z = vi/4 if n = ±1. 	 Thus from the argument of the delta function in Eq. (99)
or (100), we see that for the right-circularly polarized

	

So far we have considered that the wave is linearly	 wave (electron cyclotron wave) we should choose the

	

polarized. In order to discuss a cyclotron wave, which is 	 minus sign, otherwise the plus sign.i
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IX. Summary and Discussion
Ono flaw in the usual quasilinear theory is that the

theory breaks down when the growth rate diminishes.
As this condition is approached, the process of resonant
diffusion becomes more and more inefficient. For the
one-dimensional "bump-on-the-tail" problem, the "dying'
difftsion process eventually leads to an ambiguous re-
sult, namely, the formation of a plateau at a certain part
of the distribution function; and then the "quasilinear'
interaction comes to a complete stop. It is true that this
difficulty may be resolved by considering the three-
dimensional problem. However, the basic problem is still
there, although it appears less severe.

In this memorandum, we present a unified theory
which includes both the macroscopic coherent field and

the microscopic fluctuation field. We are especially inter-
ested in the case in which the contribution to the pair
correlation from the propagating mode of the fluctuation
field is considerably more important than that due to the
nonpropagating modes and direct particle encounters. For
the sake of generality, we have considered both electro-
static and electromagnetic interactions, and also a magne-
tized plasma. The result may be summarized as follows:

+W
are _	 neM	

k- a -I- 
nfle a

at —	 ?ite	 ( 90,	 Ul avl)
k

S
	».-m

X 1 14n I = S ( wR — niZ, — k. u.)

X 
( Aare (y:, yi)

[ 
as v7 

(4, al, Re ,,,. (k, tea) ar)

(rx (et)> ( are	
(102)

nsz„ are)1^
I ^, m

e k, av- f vl ^vl /JJ 

at (rf (et)) = 2y (k, wv) (ri (Et))

1647r' u,	 n„ e„	 dvl vl 	dv,
o	 -oo

fl	 fi=—op

where

il e al	 kl u".L
(QnI^- v, a, l W kCOS^^ ^n

	cis

I ai vl sin = iG1;,= 
(1 s )

ne

Equations (102) and (103) show that the time-independent
solution of re is the Maxwellian distribution. The con-
servation of particle and wave energy is also proved by
taking into account both the resonant and nonresonant

contributions.

The "friction” term in Eq. (102) and the source term in
Eq. (103) represent the spontaneous Cerenkov emission of
the unstable mode. The usual "collision integral'' is con-
sidered to be negligible in this case.

For the high-frequency electron wave, the spontaneous
emission term in Eq. (102) is admittedly small and of the
same order of magnitude as the collision term (Ref. 20).
However, for the unstable ion wave, the spontaneous
emission can be much more important than the collisional
contribution since the population of the emitting elec-
trons is high.

In deriving the amplitude equation, the have made use
of the adiabatic approximation; that is, we have treated
the distribution function as a time-independent quantity.
Strictly speaking, such an approximation may be incon-
sistent with the theory and, in principle, we should in-
clude the effect of slow variation of re in the derivation.
However, such correction turns out to be rather insignifi-
cant in the quasilinear theory, as pointed out by several
authors (Refs. 6 and 30). Intuitively, this consequence is
conceivable from the following point of view. It • is ex-
pected that the correction terms to the Landau growth
rate are proportional to the moments of are/at since y is
independent of particle velocity. However, according to
the usual quasilinear theory, we know that only a narrow
region of the velocity distribution function evolves signifi-
cantly clue to the resonant diffusion process, and the
change of the moment of the entire distribution function
with respect to time cannot be very large under ordinary

x S(vs— na, —k,v„)(Q, 1 2 Fe (v=, vl)

—
a

— [ w2,  aµ Re µ,• (k, wa) ava,q

(103)
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'The general collision integral has not been derived in this memo-
randum. However, when electromagnetic interaction is not im-
portant, the collision integral has been discussed by Rostoker
( Ref. 28) .
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circumstances, Thus, the correction to the growth rate
cannot be important,

The theory established In the present work is fairly
general except for the assumption of weak turbulence,

However, it Is possible to improve the theory so that It
can describe strong turbulence. It• also appears desirable
to generalize the present theory to study instabilities
originated by plasma inhomogencity such as, for Instance,
the drift-wave instability.
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Appendix A

Evaluation of the Source Term

The source term may be represented as

.S = ]hn 2A	 do	
E [a,, Re ana a1]	

(fl,1,a1,11;,Q
A" o	 3N	 iaw [at Ro ai l (X, w) a1]

.N
,^	 S (w — wg)167r° w'lint ..A	 dw	

zAso	
-w	 a I[w^a,Retij(k,w)a/]

X Le, 1:e, J cl'v(v-a) f d'v'(v'•a)
r

X
 J

N (Itexp (64 — At -^ I lc - r, (t)]
a

N

Y.	 (It'cxp[—iwt'— At' +ik•r'r(t')]
0

X 11, 8., S [v, (t)	 Vr (t')] 1', (V, (t))	 (A-1)

where we have: -fade use of Eq, (24). (Notice: other terms
do not contribute.)

If we "translate" the velocities such that v, (t) -> v and
v,(t')>v', then correspondingly, we should translate v
to v, (—t) and v' to yr ( — t'). Hence, we can write

Integrating over v' and utilizing the relations

v,(—t)• a v, a, + vj a, [cos (gyp +n, I) cos y

— sill + % t) sin y]	 (A-3)

ik - [r, (—t) — r; (-I')] = —lk, v, (t _s t')

I I,R^vi [Sin (¢ q-Ste I) 	 Sill (,f, + S2, t')]	 (A-4)

where 4, is the anglo between the vectors kl and v, and
other quantities are defined after Eq. (59), we find that

S 4^^JD 4
4a0 I –
	 (w,2 a i Re Ej l (lc, 6),) al]I nl:^-N ns-N

• f
	

tN	

D 

N 

0

N 
dv^, vl r dv,	 dt^

N
 dt'

N 

• exp [ Iwq (t — I') -- A (t + I') — inn, t

+i"l0 8 t'— im¢+in0] l a,v, +a.,. cos0(
/

I Q

X 1,1(a) — ial vl sin 01t1(a) }

32;r' w2	 p
S = lim 

A FT!0_1

I
 ,̂

n, e'y J d3 v'
-,eD [w&a,Ree] 1 (k,Qa l ]

X Jm (a) + ial, vl sin ¢Jnl (a) I P. (V)

where we have used the identity

(A-5)

X wdtexp[iwt—At+ik•r,(—t)]
0

X odt'exp[—iwt'—At'—ik•r,(—t')]
0

X [va( —t)- a ] [ve(—t')'a]

X s(v—v')F.(v)

+N

eiaeln¢ -E 1,,.(a) ein¢
fl v—N

and q, Is defined as

_ klvL
a—

X

(A-2)

In Eq. (A-2), we have replaced r, (t) by —r, (—t), and
r', (t) by —r'. (—t') because of the velocity translation.

Since we consider that

r, (v) = r, (v., v")
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A

the 0-Intogration is non-zero only when in = n, We finally
conclude that

where

Up Ur + at cos	
11R^	

),^ rt M la U SinQn 	 ^y	 () " 1 1 Y^n (n)

(A-7)

or

(A-0)

air, (,)12 2 Its e;

S m	 '
8	 +

^w? 
(w, a  Re el l (k, 00 rrll

t^
M	 i 07

X	 (101 V.L 	 de, j Q ; I'4
ha"00

X 8 (mq ° tin, — k, ei) F. (Up, U'y )

tin.	 '
^Qn, ► ' = [o' n, f alcos^ RL )J 12 (0

+ all of sin' OB,2 (^r)	 (A-8)
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Hence,

lim Q„ (Ek (w, Et) Na (v, w, Et))
A-,o 2,r

= ltn A
A-,o 2,R2	 -

47r2 wS (w — wq)

a[w2 ap Rt` ?cµ,, (k, 4r) ar]

Appendix B
Evaluation of the Interaction Term

The interaction term is denoted by I° , i.e,,

2A	 ;W

I° — ?) 
or
 11° o Cl,^, 

av • ^w 
(L

A --no V-2-7r'

Xn I 
(y-a)k—(v-k)a ]

w
k

X (El (w, at) N; (v, w, at))	 (B-1)
where

N; (v, w, et) = J dt exp [iwt — at — i k - r° (t)]
0

X N; (v° (t), 0) — n
A e°

Ma

X ^^ dtr Ek (w, E t) 	
ai. L', 

„
(

o	 at	 a..,

X j exp [iwr — AT — i k • r° (7)]

X (` 
a 

+ (Va (T) - a) k — (v° (T) -k)

L	 w	 J

aF° (V° (?) ) 1 + Rk (B 2)

	

aV° (T) f	 °

+ i k - rr (T')] (N; (V° (r),0) Nrk (vr (z), 0))

— n— ŝr^J dr exp [iwr — AT — i k • r, (r)]
in, o

X (BH (w, et) Er' (w, et))

X (V° (T) - a ) k — (y° (T) - k) a + aJ 
• a7''° (V° (T))

w	 J	 aV° (T)

— { n° c°ed ^ 0 (IT2 a (^k 
(w' CatJ:^k (4,, Ct))

M, 4

XT- cxp (iwr — Ar — ik • r, (T))

X r (v°(T) •a)k—(v°(T)-k)a

+a/Jw

aF° (^° (T)) 1
(T) j

As before, we see that in (N; Nrk) only the term which
consists of the delta function S [v° (T) — v; (T')] would
survive in the limit A -> 0. Thus, we may simply write

(B-4)

i

_	 .^ (Ne (V° (T), 0) 
Nrk (vr (T'), 0))

Ek 
(w' 

et)	
4wia

aR a-,,,, (k> w) av 	er J ^lJ v' (a • v')	
= ne Bar S Eva (T) — yr (T')] I'° (va (T))	 (B-5)

r

X w dT exp [i4,r — AT + i k • rr (T) ]

	

	
Again, since we are particularly interested in the un-

sable mode w = wp (k), we may use expression (54) and

X Nrk (Vr (T), 0) + 6k	 (B-3)	 retain the lowest-order contribution.

In Eqs. (B-2) and (13-3), R; and (S A; are two remainder
terms, Since, in the limit A -> 0, Re and Sk contribute only
to terms of order O (A), we may ignore both of them.

rW	 W
X 
f 

er d3 v' (v' • a) J dT fo CIT
J	 o	 0

r

X exp [1w(T — Z) — a (T+7)—i k • r° (T)
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Hereafter, we write I° = Ir + I1I. From Eqs. (B-5) and
(B-0), we have

Ie—^ yv° J 

2 7	 +0

aV•Jw^^dwQtn
k

X 
a 

20wS (w — wR)	 L a + (v - a) k 
w 

(y - k) a l

aw 
[w- aµ Re 5,V (k, w) a„] L	 J

X ( d2v'(v'•a)fwdtfwdt'
J	 o	 0

X exp [iw(t—t')—A(t+t')—ik•r°(t)+ik•r;(t')]

X S [v° (t) — d (t')] F° (v° (t))
	

(B-8)



After some algebra, we obtain

I
k ntr-ro

aer + Ul kv4n,

X
F. (Y)

l

I ^n ^' E (wv — rin, — kr Ux) a

)`	 aw4 [wq 
ap Re F,v av]

(B-13)

where all notations have been defined previously (see
Appendix A).

We next study 1 1.1 . If we define

A = a + (v, (t) • a) k — (v, ( t) - k) a	 (B-14)
404

then we see that

A 
art  (v, (t)) = [(b - A) b + (b X A) X b cos n, t•

ava (t)

— (A X b) sin n, t] • a 
aavv)	 (B-15)

where F, (v) = V. (o,, vi) and 3 is a unit vector parallel
to Bo, From Jags. (13-7)t {3-14), and (B-15), we can show
that

n1, 
—Ia

e"
11

J.	 r2m„ fi at,,
k

vl al k: cos (0 + 0) — k,. vl az cosK	 ¢\
X	 +	 J

4`4

X P (kr, kl, oz, vl, 404) J + 1 all! rvl (al cos (0 + 4^)

(B-16)

19

+ V. a-.kl cos 0 — yr al kz cos (¢ + ,^) \
404	 J

X P (ke, kl, Vz, vl, 404) 1!

.i

I^1 = E
k

n"a J	 'rlo a • J w rlw S (w Wa)

X^a+(v•a)k—(y•k)a1
to

X
 1 

^dTexp[iwr-0+r—ik•r,(T)]
U

X a+ (
V, (r) • a) k — (y, (T) • k) a 	 (Va (T)))

w	 J aV, (T) I

(B-7)

In the following, Ip and Ipt will be discussed separately,
First, in Eq. (B-6) we notice F. (v, (t)) _ Y. (v) because
we consider F. (v) = F. (vz, vl). Integrating over v' and w,
we find that

k	 !o

X Jim a 
A	

dt
A-, o at,4 

[w, aµ Re d, (k, w4) a,] o

X I tit' exp [iwq (t — t') — A (t -h t')
3 o

— i k • r, (t — t')] [a • Y. (t — t')] F, (v)	 (B-8)

In obtaining expression (B-8), we have introduced a
"velocity translation" by equating v; (t') to v, (t). Corre-
spondingly, we find that

	

r,' (t') = re (t') — r; (0) —> r, (t) — r, (t — t') 	 (B-9)

V -), v, (t — t')	 (B-10)

We shall designate T = t — t' and employ the relations

a • v, (T) = az vz + vy aj.

X [cos ^ cos	 T) — sin 0 sin (^, — n, T)]

(B-11)
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k • r, (r) = k, vrT — L" —t) ' sin (^, — n, r)
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where	 2	 +w

	

r	 w

a d

 zL\	
R—

	

i a (1;) a	
(le ) nmuonmmnt —	 az(o,	 11it,)Jn(a)

	

1 f	
2711, w,

R) ° [ (E (t)) + 2 8t 8^, J ^J dt	
k	 ,,,,_w

	

R	 o

X exp [iwRt — 0+t — ik, v, t]	
I a1 L 11f2, cos On (a)

k1 vy	

^^	

'-- iQy Uy k, sin ¢Jn (a
))
 (uz, ul, kg, kl, mry)^

X cxh i 
0, 

[sin (q, — it„ t) — sin q)]	 a,

' yl ay k, cos (4) +	 n, t) — k1 y1 a, cos ( r(, — fl , t)^	 + y av1 L
I ay (o)R — v, k,) cos of,, (a) 

n l
tU4

-i- a. v. na, J„ (a)
,

X 
8v, 

-I- ay cos (0 -i- ¢ — S2, t)	 — iay vy (a,R — k; v,) sin ^J;t («))

-I- 
vz a, k1 cos (O — n, t) —u, k: al cos (o + o — D, t)\ a sj1	 X R (v„ vl, kz> kl, toR)'}	 (B-19)a

	

l	 I

	(B-17)	 where

_	 ar„	 cos	 ntt, ar.
	After some algebra, we Gnd that I„ t may be expressed 	

— 
^tt” 

J0 (a) av, ay k1 J" (a) v1 80y
as the sum of two parts, say (49ranonant and (Ipt) umu • onannnb	 al ,	 1
and they take the following form: 	 I ia.1 sin y^J;, (a) 

avy 
i 

CP

+w	
81

	

^̂\1 arC	 ,	 — 
n,q 

aWR 
P 

o,R — nit, — k, v,
(18I)reson	

a

	

\nnt =L 	^(k,— +— a
717•d m f	 av,	 vy acy

a

	

ar	 ,tn „ ar,l a (Lk>	
8-20

	

k	 -w	 X Q Ck. a^„.	 ul ao1 /^ at	
(	 )

X { S (tUR — niz, — k, v,) I Q 
I `	 In the quasilinear theory, (IAt) remnant is supposed to be

	

ll	 much more important than (I'm )„aerana„ant, which repre-

X (k- 
aF„ 

a 
1Lft„ an" \1 (Ef)	

(B -18)	
sents the contribution from the nonresonant part, and

	

av,	 v1 av1 Jllr	 thus the latter is often neglected.

i;
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Appendix C

Evaluation of ctp 4n , (k, &)) a,

By definition, we have	 a- ux a,, k,. (cos ^ cos	 sin 0 sill r3,) ^ kl Ul a. cos

r.,

117d nee; 	 r
Rp E^,v ( 1C, w) av = aµ ll^t — 

n, p1ti o	 in,	
[I U (V • a) X 

FDA { L ay (cos cos 1) — 51n 0 5111 0)

A

-h vz a,r kl cos — v, k, al cos l cos ,j,

W

	

-I- v: lc: a L sin , sin,(, arel 	 (C-1)
w	 ' a0yf

where w„ = 47r ne a„/me and the other notations are similar
to those used before. After some manipulations, we obtain

	

Iw	 W	 ar

	

aµ ^,, (k, w) av = 1 -I- 21r j ,A, J rlu,. ul	 llu, n? u =
w „	 n	 aUy

A

+00

aA 11' Sze' uy
-1-^	 cos' ICJ 

k,,
k^	 Sve

II.-m

+ a” d' sin” 1;,` k. L V .L	 1
nA J ti^

	

r a,	 w

X aul} -h 27r,"_, J dvi. v.L f llu;
111	 a	 o

tl

+w

X	 IQ,1=
w — k, v, —11Q. -1- iO+

11-W

X
j ar	 1tnA arA^k av, + vi v,

X
 ^

y dt exp [iwt — At — i lc • r A (t) ]
v

X a+ k(a•vA(t))—(v„(t)•k)nl
w	 J

W, (VA (t))

•	 avA (t)

=1—^L
w,;Hill (11 1 (It (VA(^t)•a)

Atill • 	11

X

X exp [iwt — At + i k • rA (—t)]

X L 
a 

k (y t a) — (y k) a l DFA (v)-^_ 
L	 w	 J aV

lG

— 1	 wA lim ll•a v	 (It
w ^/ 4-r0 f	 p

X [v-. a: -} ua al (cos ^ cos (rl, I- Sze t)

— sin ^ sin ((k + Sze t) ] exp L iwt — Ot — t lc, v.- t

kl Ul	
r

— i ne (sin (q, + no t) — sin ^,) ^ { ^ a, (C-2)
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